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SUMMARY

The solutions corresponding to the reflection of a centered simple
wave along a straight wall and along a free streamline of constant pres-
sure are formulated in mathematical terms and expressed in terms of a
Fourier transform. It is shown that these solutions are simply related
to some important solutions arising in the theory of linear partial
differential equations. Moreover, it is found that the classical prop-
erties of these flows are closely related to some important theorems
predicting "a priori bounds" for special mathematical problems, in such
a way that it can be said that these properties are a physical inter-
pretation of those theorems. Finally, it is pointed out briefly that
these results lead also to some interesting observations concerning the
mathematical theory of positive definite functions.

INTRODUC TTON

This paper is concerned with two simple and fumdamental notions.
The first is the "centered simple wave" or "Prandtl-Meyer cormer flow"
and its reflectilons along a straight wall or a free streamline of constant
pressure. Thls is a problem of great importance in the two-dimensional
supersonic-flow theory (ref. 1), and the following quslitative result
is very classical: An expansion simple wave is reflected as an expansion
wave by a straight wall but reflected as a compression wave by a free
streamline of constant pressure. However, it does not seem that any
attempt has been made so far to give a mathematical formulstion to this
problem. It will be shown that these "elementary interactions" are
closely related to some important solutions of the linear partial differ-
entisl equation which is satisfied by the stream function when the
hodograph method 1s used.

The second notion considered in this paper is the so-called maximum
theorem, or more precisely "a priori estimate," for some specific problems
related to a partial differential equation of the hyperbolic type. More
precisely, the paper of Bers (ref. 2) devoted to the Cauchy problem
is referred to, in which very simple bounds for the solution have been
glven. Consideration is also glven to the maximum theorem relative to
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another type of boundary-value problem, which has been formulated in g
speclal case in reference 3 and under much more general conditions in
reference 4 by Agmon, Niremberg, and Protter. It is possible to show
that a physical interpretation can be attached to these results by con-
sidering the elementary interactions previously mentioned. Moreover, it
will be seen that some of the statements can be somewhat lmproved.
Finally, the relation between these results and the mathematical theory
of positive definite functions will be pointed out, and this relation
seems to lead to new results in this mathematical field.

This work was conducted at Brown University under the sponsorship

and with the financlal assistance of the National Advisory Committee for
Aeronautics.

SYMBOLS
D(cr,orl,a,) Fourier transform of 8(9,0,61)
d(e,cr,al) doublet at 6 =0 and 0 = 0y (op € 0)
H(c, cl,or.) Fourier transform of d(e,o,cl)
k(o) defined by equation (7)
M Mach number
m - mass flow, pq
q magnitude of veloclty vector
r,on polar coordinates in physical plane
s(e,c,cl) source at 6 =0 and ¢ = 0y (01 £ 0)
t =tan p
X,Y' Cartesian coordinstes in physical piane
oA dual variable of 6 assoclated in Fourier transform
8 angle of velocity vector with X-axis

1 Mach angle
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p density

g reduced speed, defined by equation (5)
P veloclty potential .
¥ stream function

GENERAL EQUATIONS

Consider a uniform supersonic steady flow deflected along the cor-
ner X'0Z in sketch 1. As is known, a simple wave centered in O follows

Sketch |

the uniform flow. The veloclty vector is constant along any ray starting
from 0. In the physical plane the polar coordinates (origin 0) r and

o will be introduced. Denote the magnitude of the velocity vector by gq,
its angle with OX by 6, the density by p, the mass flow by M = pq,

the Mach number by M, the Mach angle by u, and the stream function by
Y. Inside the simple wave p, q, m, M, and p are functions of
alone. The rays are characteristic lines and consequently make the

angle p with the streamlines. Then it is possible to write

¥ = Cmr sin p Q)
where C 1is a numerical constant, or

ay _dm  dr
w—m+r+cotudp. (2)
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Now, according to the definition of the Mach angle u, along a streamline

ar _ -cot ¢ dw
r

and along a curvilinear chaeracteristic
ar _ -cot 2p dw
T
As a result, by writing equation (2) along a streamline, it is found that

%?-+ cot p du = cot p dw

and, along a curvilinear characteristic,

%‘E = (cot p ~ cot 2u) dw (3)
_ 42
Let t =tanp and cot 2u = Le?t—- and equation (3) can be rewritten
as
2
a1+t
— = dw L
7 = (&)

This relation gives the value of V¥ along a curvilinear characteristic
of the simple wave. Now recall some classical material on the hodograph
method. A more convenient variable o¢ is introduced instead of q,

defined by
- [e :
q

if the sonic speed 1s taken as the unit speed. Then it can be shown
(ref. 5) that, when expressed in the hodograph varisbles ¢ and 6,
the velocity potential ¢ and the stream function ¥ of any flow
satisfy the system.l

P m e 6)

q)o- k(U)‘{"e

lSubscrip'bs are used for partial derivatives.
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where

k(o) = 5 (1)

Then V¥ is a solution of
k(a)q"ee + ‘1"0'0- =0 (8)

Notice that k(o) has the sign of o. To every solution of equation (8)
there corresponds a flow in the physical plane, the correspondence being
given by integration of the exact differential

Tr1q) (9)

dX+idY=eJ@(ie)(—gj-+i-;1—

Equation (%) may now be written in terms of this notation. First of all,
for supersonic flow or for ¢ negative,

Now

(D) B[ () o(vE)] o)

The quantity Py may be computed from the Bernoulll equation
pM2 dg + gdp =0
which shows, taking account of equations (5) and (7), that
o =M =1 - k(o)p® (11)

Thus equation (10) becomes

1+t29g=_1-kp2_(\/3)g
2t do 20 5 VEE;

The simple wave which has been consildered is mapped on a line along

(12)

which d6 = \[-k do. On the other hand, obviously ® = 6 + p. Equa-
tion (4) gives
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&y 1+t2de+au 1+ t° E -
¥ds 2t  do 2t

1 - kp? _ (J:E)o - - l,(“k)g
2p 2 & ()

The following theorem is thus obtained:

Theorem 1: The value of the stream function along a curvilinear
characteristic of a centered simple weve is given by

1/

¥ = C(-k)~ (13}

where C 18 a numerical constant.
REFLECTION OF A SIMPLE WAVE ATONG A WALL

Consider the reflection of the centered simple wave along a well
parallel to the X-axis (sketch 1). The velocity of the originslly
uniform supersonic flow is assumed to correspond to the value o, of

the variable ¢ (co is negative). This flow remains uniform until it

reaches the characteristic OA. Denote by AMB the curvilinear character-

istic of the simple wave which passes through A; it is desired to

define V¥ din the region ABC. Without any loss of generality, 1t can

be assumed that ¥ =1 on the wall. 1In the hodogreph pleme 60, V¥ is

a solution of equation (8) which is equal to 1 on AC and, according to
k

-1/
equation (13), to h(o) = [ (9)

) on AMB. Applying a symmetxry

k(o

argument In the 6o-plane with respect to the o-axis, which corresponds

to a symmetry condition with respect to the wall in the physical plane,

a solution of equation (8) must be found with the two boundary conditions
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along the characteristics AB and AB' (sketch 2),
¥ = h(o) along AB

¥ =2 - h(o) salong AB'

Sketch 2

This problem will be solved by using a Fourier transform and it willl be
proved at the same time that this solution 1s closely related to the
Riemann function of equation (8).

Define the Fourier transform of ¢' by the pair of formulas

~
]

F(¥)

U(a,0) = f ) ¥(6,0) exp (-21inad) 46
- S (l’-l-)

7 (v)

s

i

¥(0,0) = [ Uay0) exp (2aad) aa

Equation (8) is transformed into the ordinery differential equation

Uy, - 42ak(0)U = 0 (15)
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Now conslider the solution U = H(o, cro,cc,) of equation (15) which fulfills
the boundary conditions

H(co, cro,c,) =1

(16)
Hg(oo,cro,a,) =0
(it is an entire function in o according to Poincard's theorem)
and the solution ¥ of equation (8) defined by
-1 -
¥ =F [(:bta,) 1‘H(U,oo,a,):l o a, ()

This solution is obtained by assuming that the integral is to be taken
along s path which follows the real a-axis but passes below the origin
in order to avoid the pole « = 0. It has the following properties:

(1) For o =o0,, Vv 1is O for @ negative, ¥ =2 for © positive,
and V¥, 1s equal to O. Consequently, V¥ 1is identicelly O in the region

NAB and identically equal to 2 in the region N'AB'.

(2) In order to investigate the properties of V¥ inside the
region BAB', the asymptotic behavior of H as a function of o for
large values of |a| must be investigated. The following lemma will
be proved later:

Lemma 1: For large values of [ct.l,
H(O’,O’o,a,) ~ h(o) cos 2na (y - yo)
where y 1s related to o by

dy = - \-k(o) do (y =0 for o =0)
(‘bhe same relation holds between Yy, and 00).

Assuming the validity of this lemmsa, it is clear that ¥ as defined
by equation (17) is a continuously differential fumction of 6 and o
inside the region BAB' which has some discontinuities when crossing the
characteristics AB and AB'. When 0 is increasing, V¥ admits a Jump
equal to. h(oc) along AB (e-l-y—yo =0) and along AB' (6 -yt Y, = 0).
Consequently, the function ¥ given by equation (17) is the solution of
the problem because it is the unique continuous solution defined in BAB!
which satisfies the boundary conditions along AB and AB'.
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Now the relation between this solution and the Riemann fumction
remains to be shown. It was shown (ref. 6) that the Riemsnn function
for A and ¢ < o, cen be defined as -F'lE)(o, Uo,cr.)] where D(o,0,,a)
is a solution of equation (15) which satisfies the conditions
D(0p,00,x) = O and Dg(00s00s&) = 1. It was also shown that if T(o,a)
and S(o,a) are the solutions of equation (15) which satisfy

5(0,a) =0
7(0,a) = 1
Sqg(0,a) =1
Tg(0,a) =0

it is possible to write
D(0,00,@) = 5(0,a)T(00,a) - S(00,a)T(0,)

Similarly, one can write
E(0,05,a) = T(0,a)84(00,a) - S(0,a)Ty(00,x)

because the right-hand side is a solution of equation (15) which satisfies
conditions (16). Then

H (U: Oo» a') = "Dco (U: O0> a’) (18)

Taking account of equation (17), this result can be interpreted as
follows:

Thorem 2: If ¢(6,a,00) is the solution which corresponds to

the reflection of a centered simple wave along a wall and R(e,a,o,ob)

is the Riemann fumction of the equation (as previously defined), the
following identity holds:

¥g (e:U: C‘o) = ZRUO(BJU,O}UO) (29)

Proof of lemma 1l: The result of lemms 1 1s a very classical one. For
brevity, in order to avoid a new proof, 1t is suggested that equation (18)
and the result glven in reference 6 be used in order to derive the
required property.

e e e i — e ———————— e e e
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In the limiting case when o, +tends towards O, the given uniform

flow becomes sonic. The function V¥ is defined inside the region
bounded by the characteristics OT and OT' passing through the origin of
the 6o-plane. Tt is equal to O on OT and o 2 on OT', and its derivative
with respect to © 1s twice the solution previously celled (refs. 3

and T) the minus-doublet. In this case no discontipuitles appear along
the characteristics OT and OT'.

INTERPRETATION AND IMPROVEMENT OF BERS' THEOREM

The Bers theorem considered herein Is concerned with the Cauchy
problem with data on a segment PQ of the line o = oy, oy being a

nonpositive constent. On PQ it is assumed that

i'(e,crl) = 7(8)
(20)

vo(e,crl) = v(8)

v(8) and v(8) being ¥mown functions. These data define the solution
in a domain PQR, lying in the region o< oq and bounded by the two

concurrent characteristics PR and QR. Bers' theorem may be stated as
follows: Provided that k(o) is en increasing, piecewise continuous
function of o, +the solution ¥ of the Cauchy problem satisfies in
PQR the following inequality

|v|<: M+ N(oy - o) (1)

where M and N are, respectively, the bounds of |'r(e)' and Iv(e)l
on the segment PQ.

This theorem may be broken down into two parts: (1) When the special
case v(8) = O is considered and (2) when 7(8) = 0. It is obvious that,
according to the linearity of the solution with regpect to the data,
relation (21) is implied by the results corresponding to the two parts.

Define d(e,cx, Ul) and s(e,c,ol) as the doublet and the source
at 8 =0 and ¢ = 0y, that is, the solutions of equation (8) defined
for o <oy eand for every value of 6, so that dc(e,al,cl) =0
and s(e,cl,orl) =0 and that the values of 4 and s,
reduce to the Dirac distributions® at 6 = 0. Equivalent definitions are

along o = oy,

2(1 and 8 are O outside the two characteristics passing through
06 =0 and o = 0y.
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d(e, cr,crl) = F‘l[H(U,crl,a.):l
r (22)

-1
s(e,cr,cl) =F E)(o,cl,a)]
J
It will be shown that Bers' theorem is implied by the following theorem:

Theorem 3: If k(o) is an increasing, piecewise continuous func-
tion, then 4 1s nonnegative and s, nonpositive.

Assume that this result is true; then an improvement of Bers'

theorem can be derived immediately. Consider the first part, v(8) = O.
The solution 1s obtained as a superposition of doublets. If 4 is
nonnegative, T(6) >0 implies that ¥ >0. As for T =1 and ¥ =1,

it can be concluded that:

If along PQ v(8) =0 and M' ST(0) M, then in PR M' < ¥ < M. .
This is a maximum theorem which gives a slightly more precise result
than the first part of Bers' theorem.

Similarly, i1f T = O, the solution is obtained as a superposition
of the sources. If v(8) >0, then ¥ < 0. On the other hand, if
v=1, ¥ =0-o0y and, consequently:

If along PQ T(8) = 0 and N' € v(8) SN, then in PGR
N(c - crl) SvEw ( g - crl). To simplify the proof of theorem 3
consider the partial statement of theorem 3':

Theorem 3': For the class of functions k(o) considered in
theorem 3, d is not negative.

It can be proved that theorem 3 is a direct consequence of theorem 3'.
Namely, for any oy € oy and any o < g, F‘]-Ei(cr,ao,cx,)] < 0. Now,

according to equation (18),

o,
f H(0,05,a) dog = -D(c,al,a,)
o

Thus F’l[D(c, crl,cc)] = s(e,c, Ul) S0 according to the linearity of the

Fourier transform; theorem 5> is therefore a consequence of its first
part (theorem 3').
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Now, it will be shown that theorem 3' ~ and consequently theorem 3
and Bers' theorem -~ can be interpreted as a direct mathematical conse-
quence of the following very well known result concerning the reflection
of a simple wave along a straight wall:

An expansion simple wave is reflected as an expansion wave; in
particular, no limiting line can occur in the region where the reflection
takes place.

In other words, any methematical proof of the previous statement
implies, as a particular consequence, the Bers theorem.

In order to prove this limplication note that, along a characteristic
d6 = € |-k do (e = *1), one has, according to equation (6),

[k(o)qre - e¥, \;:i]do
= - \k ay

and, according to equations (9) and (7),

do

aX + i ay

exp (10) a¥ (—e —\f-;:—li * f’;;)

exp (16) av¥ (— é% cot o + %)

e [1(o - eal] s (23)

As a result, V¥ 1is a monotonic function along each characteristic.
More precisely, along the characteristics MM' and L'L (sketch 2), V¥ is
an increasing fumction of 6. Then Vg is positive in BAB'; but

Yo (8,959) = ERUO(G,G,O,UO) = 24(0,0,0,)

and this result is equivalent to theorem 3°'.

Two proofs for this theorem will be outlined briefly. Proof (a)
is a complement of the Bers proof (assuming the Bers theorem to be
¥nown); proof (b) is a direct proof.
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Proof (a): Assume the following Cauchy data: v4(8) =0 and
11(8) =1 on a segment PQ of the lime o = o and O outside.” According
to Bers' theorem, for every o < 07 the corresponding solution ¥y
satisfies -1 < ¢l < 1.

Now consider V¥, corresponding to the date v2(6) =0 and
75(8) =1 - 7y; the similer result -1 <V, <1 is obtained; but
¥y + ¥, =1. Thus O <V¥; <1l. Then consider the case vo(8) =0
and T,(8) =0 for 6 <0 and T,(8) =1 for 6 >1. It must be
proved that for every o < oy the corresponding vo(e,c) is a non-

decreasing function of 6. Assume for a moment that the result is .
false; then for ¢ = there exist two mumbers 6, and 6, (e < 62)

=0 1
such that
wo(el’oé) > WO(BE’OQ)

According to the above relation, ¥,(6,0) - vo(e + 8, - 81,0) is a
solution of equation (8) which is negative for o = 0 and 6 = 91;
but this function is a particular function #1 consldered in the

beginning of the proof, and it was shown that *1 is positive, Thus
theorem 3' is proved.

Proof (b): Following the method used by Bers, consider first the
case when k(o) 1s a step function:

k(o) = -ah? for o, <0 <oy (m=1,2, ...)

®, being a sequence of increasing numbers. The following lemma will
be proved:

Lemma 2: When k(o) is such a step fumction, d(e,c,dl) is a
positive distribution.

Consider, in this case, H(o,09,a). For o,
H = cos (Enaalc). Now assume that, for op,q S0

51t can be shown that no special difficulties occur on account of
the discontinuity in T(8).
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H =§Pﬁp’n exp 221:(({%(0’ - Sp’n):l + Bp,n exp -211(%(0' - S‘P,n)]’ a-p,n’
Bp,n: and 5p,n being suitable real constants, % ,n and Bp,n being
positive, and > denoting a finite sum. It is easy to show that a

b

similar result holds for <o < because the function
Ont+l. Onios

exp eaiﬁcunn(or - “n-l-l)] (where € = tl), a solution of equation (15) in the
strip oy So< Ont1s must be continued in the strip oy Sos Onio by

-J=l+-2]-3—exp;21ﬁ g - +
> €24ttty (0 - One)

%( - g{) exp Eeai"%l(“ ' “n+1):,

in order to have in o, P IS Opio &8 continuously differentiable function

with respect to o. The presumed expansion for H 1is then valid because
@, 1s increasing with n. It is easy to formulate the corresponding

result in the 8o-plane. For every o< oy, d(e,o, 01) is a distribution*

in 06 which i1s the sum of a finite number of Dirac distributions with
positive coefficients. The lmportant property that the coefficients
%,n and PBp pn are positive 1s used here. 1In other words, in the

8o-plane, for o< o, 4 is a positive measure equal to O everywhere
except on the singular characteristics shown in sketch 3.

*0’
= 0
_____ N
A 2
VAR SO

Sketch 3

YFor the properties of distributions used in this paper, see refer-
ence 8.
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Now theorem 3' is an immediate consequence of the following lemma:

Lemma 3: If a sequence of increasing step functions kn(c) tends

umiformly toward an increasing, plecewise continuous function k(o) in
op S0 S 01, then the distribution doublets dn(e,o,oi) tend toward

d(e,o,ol) (in the sense of the theory of distributions).

As a result d(e,o,cl) is a positive distribution and, in partic-

ular, a posltive function when d is =a function.? 'This is precilsely
the statement of theorem 3°'.

This lemmna states the continuity of the solution of the Cauchy prob-

lem with respect to the coefficients of equation (8) - in fact, here,

the function k(o). .The result is a classical one when the data and,
consequently, the corresponding solutions are "regular" enough (one
possible proof is given in ref. 2 as an application of the Y -monogenic-
functions theory). Consider, for instance, the data T(8) = 0 for

6 <0 and T(8) = 6®/p' for © >0 and v(6) = O. The sequence of
solutions for this problem corresponding to kn(c) tends uniformly in

every closed subdamain to the solution corresponding to k(a); but
dn(e,c,cl) end d(6,0,07) are, respectively, the derivatives of

order p + 1 of this sequence and its limit. The result of lemma 3
follows according to the continuity of the differentiation in distri-
bution theory and, at the same time, the proof of theorem 3' is achieved.

It was noticed above that theorem 3' and Bers' theorem are conse-
quences of the fundamental property of the reflection of a simple wave
along a straight wall. However, it does not seem obvious that the
converse 1s true. It should be noted, however, that the method used in
proof (b) not only leads to the conclusion of theorem 3' but also gives
a mathematical proof of the statement concerning this property of the
reflection of a centered simple wave. The reader will recognize this
fact easily after a brief inspection of the results of lemmas 2 and 3.

Y

5Tn particular, when k(o) is continuous in oo S0

A
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REFLECTION OF A SIMPLE WAVE ATONG A FREE STREAMLINE

Consider a uniform supersonlic flow bounded by a straight wall X'0
and a parallel free streamline X"A (sketch 4). This flow turns around

Y
A

Sketch 4

the corner X'0OZ. A centered simple wave follows the uniform flow. As
a result, the free streamline is bent down and the initial expansion
wave 1s reflected as a compression wave. It 1s desired to glve a
mathematical solution of this problem and to find the function ¥ in
the region of reflection ABC as fumction of o and 6.

This region is mapped into the ABC triangle of the corresponding
hodograph plane 6o0; AB and AC are two characteristics. The following
conditions must be satisfied: Along AC,

¥ =1

1/
¥ =h(o) = [ﬂ?ﬁ]

k(o)

and, along AB,

The last vaelue was obtalned in the section "General Equations"; o, is

the value of o corresponding to the given wmiform incoming flow. Notice
the special case Oy = 0; in this case ¥ =1 along the sonic line o =0

and V¥ = 0 along the characteristics. The importance of such a solution
was pointed out previocusly (refs. 3 and 5).
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An expression for the solution of this problem will be given first.
If

D(o og,a)
_ gl ’
ve=E 215D 0, 0p, ) (2 < o) (24)

the integration of equations (14) being carried out along a line
Im(a) = ¢ vwhere c is & small positive constant, then ¥* is a solu-
tion of equation (8); when o =o0,, V¥ =0 for 6 >0 eand V* =1

for 6 < 0; when 0 =0y, V¥ =0 for every value of 6. Moreover, it

was shown (refs. 6 and T7) that ¥* is identically O for any point of
the strip 95 € 0 £ 05 1lying on the right side of the characteristic ABB'

(sketch 5) and the asymptotic behavior of the integrand in the Fourier

‘0'
8
__._.C A ______
06
I I
g
Sketch 5

integral shows immediately that V¥ admits a jump equal to -h(c) along
this characteristic ABB'. Thus, provided that op 1s lower than the

value g of o in B, ¥¥* is identically equal to ¥ in the region ABC

where the solution is to be found. A result very similar to formula (19)
of theorem 2 could be formulated, relating this solution V¥ +to Green's
function of a strip as defined in reference 6. The introduction of the
arbitrary quantity oo 1is, In some sense, quite artificial. Such an

introduction has been found necessary when k(o) is defined only for
g > -0ps O being a positive quantity, as is the case for the usual 2

ldeal gas with constant speciflc heats. When the equation of state is
such that k(o) is an increasing fumction defined for every negative
value of o, it is possible to consider, instead of equation (2%), the
solution
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¥ =71 [(mm) "lHl(o, Uo,a.ﬂ (25)

where H; 1is the solution of equation (15) equal to 1 for o = 0, which,

for o = ia' and o' positive, is real and tends toward O when o -tends
toward -oo. (For a discussion of the existence and properties of such a
function Hy, see ref. 9.) In fact, in every finite domain ¥ is the

limit of ¥*¥ when Op—> =00.

Now the relation between the qualitative properties of such a flow
and the maximum theorem of a Tricomi problem remains to be emphasized.
For brevity, only the case o, = 0 is considered in the following dis-

cussion. Assume first that the equation of state of the fluid and the
turning angle X'0Z are such that no limiting line appears in the region AEC
vwhere the reflection takes place. According to equation (23), k(o) is
such ’Ehat the following property A is satlsfied for some a such that

a < o(B).

Property A: The solution of equation (8) equels 1 along the seg-
ment MV (sketch 6) of the 6-axis and O alaong the arc of the characteris-
tic MP and varies monotonically along any arc of a characteristic drawn
inside MNP, provided a < o(P) < 0, & being a negative constant.

%1

P

Sketch 6
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Now it was shown6 in reference 3 that from property A a maximum
theorem for the Tricomi problem can be derived: If the values of a
solution ¥ of equation (8), defined in the domain MQNPM, are equal to
O on MP and are bounded in modulus by K ealong the drc MEGN drawn in
the half plane o > O (sketch 6), then |¥| < X inside the domain MQNFPM,
provided a S o(P).

Thus, a relation is established between the veloclty for whilch a
limiting line appears in the flow and the range of velidity of the max~
imum theorem. Recently, Agmon, Niremberg, and Protter (ref. 4) have
found sufficlent condltlons for the validity of property A. They proved

that, if k(o) is an increasing I"unction,7 property A is valid with
a = a,, &y being the largest negative root of the equation

1
e(o) = E—k(d)] 5o = 0» @nd &, must be taken as -w if e(g) > 0.

Thus, thils result gives the following informetion for the flow considered
in sketch 4%: The velocity for which a limiting line may occur is greater
than the value of the velocity corresponding to o = a,. In other words,

it gy 1s the value of o vwhich corresponds to the first occurrence
of a limiting line in the flow (when Oy = O) , then a; S a5+ The
question whether a, 1is effectively equal to a, or less then &, 1is

8till open. If the equality holds, then this gives a very simple way
to compute the velocity at which the limiting line occurs. If not, a in
property A can be chosen equal to ap, which means that the range of

validity of the maximum theorem as derived from reference U4 may be extended.
CORRESPONDING RESULTS IN THEORY OF POSITIVE DEFINITE FUNCTIONS

The relations between the results obtained In the preceding sections
and mathematical theory of posltive definite functions will now be polnted
out. For the properties of such functions and for a bibliograephy of this
topic, see reference 10.

6The proof was given for the Tricoml equation but can be extended
immedlately to the case which 18 considered here. ’

TTo be specific, it is assumed here that Xx(o) = oe(o) with c(o)
a continuous positive function, twice contlnuously differentisble. Thus,
e(o) 1s a positive function for sufficiently small values of o.
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A continuous function £(x) defined for every real value of x is
positive definite if, whatever be the real numbers x; . . . x; and the

complex numbers 2zj . . . 23, the following inequality holds:

J’Zkf(x'j - xk)zj'i'k 20

This definition was generalized by Schwartz (ref. 8), who has given
the definition of a positive definite distribution. In this theory the
fundamental theorem is Bochner's theorem which, as generalized by

Schwartz ,9 states that a distribution is positive deflnite if and only
If its Fourier transform is a nomnegative measure.

Now it is clear that theorem 3 gives rise lmmediately to a theorem
which can be formulated as follows:

Theorem 4: Consider the differential equation
Uy, + B2p(z)u = 0 (26)

where p(z) 18 a nondecreasing function of z in the interval
29 € zS 2. Choose a such that z) S as z, and consider the solu-

tions D, (z,pB) and Se(z,8) of equation (26) which satisfy the conditions

Da(&)B) =1
o =
<5 Da(8sB) =0

S(a,a) =0
e _
by S(a,a) = 1

Then, for every value of z such that a £ 2zSz, D, end S, as
functions of the real variable B, are positive definite.

Similarly, using the results of the section "Reflection of a Simple
Wave Along & Free Streamline,” the following theorem can be derived:

3 Schwartz's extension of the Fourier transform 1g used here.
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Theorem 5: If p(z) is a positive, nondecreasing function- such

-1/4
that [;(z) / 4z 20 for z Z z;, then the solution Hy(z,B) of

equation (26) which is equal to 1 for 2z = a and which tends toward O
when B has an argument equal to n/2 and z tends toward infinity is,
as a function of the real variable B, a positlve definite fumction for
any fixed value of 2z greater than a.

Applications of these two theorems can be written immediately for
the special examples of equation (26) considered in reference 9.

Brown University,
Providence, R. I., September 20, 195k.
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